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ABSTRACT

A novel combination of model predictive control (MPC) and

sliding mode control (SMC) is presented in this paper. The mo-

tivation is to inherit the ability to explicitly deal with state and

input constraints from MPC, and the good robustness property

from SMC. The design of the finite-time optimal control problem

and the conditions for the persistent feasibility and the closed-

loop stability are discussed. Simulation results are shown to

demonstrate the nominal and robust performance of the proposed

control algorithm.

INTRODUCTION

The idea of the model predictive control (MPC) is to predict

the system evolution in future time instances by using a model

of the system [1–3]. At each time step, a certain objective func-

tion is optimized over a sequence of future control inputs subject

to operating constraints. The model predictive control provides

an approximation of an infinite-horizon optimal control by using

the receding horizon technique. The system constraints in the

optimization problem include modeled system dynamics, actua-

tor saturations, system state limits due to regulations and safety

considerations in practice. It is the capability of dealing with

constraints explicitly that makes MPC distinct from other con-

trol techniques.

When it comes to handling the system model uncertainties

or external unexpected disturbances, the analysis of the closed-

loop feasibility, stability, and robustness of the MPC becomes

difficult because of the computational complexity, design of ob-

jective function, and terminal constraints, etc. Robust MPC for-

mulations have been extensively studied in [3–5]. However, the

computational complexity is normally the major bottleneck of

practical applications of these developed robust MPC methods.

On the other hand, sliding mode control (SMC) has been de-

veloped to deal with uncertainties [6–8]. The idea is to allow the

transformation of a controller design problem for a general n-th

order system to a simple first-order stabilization problem, i.e.,

stabilizing the dynamics associated with the switching function.

Then for the equivalent first-order system, the intuitive feedback

control strategy can be applied, “if the error is negative, push

hard enough in the positive direction and conversely” [9]. Good

performance can be guaranteed even in the presence of paramet-

ric uncertainties. The discrete-time counterpart has also been

well studied in [10–12], which is important for digital control

systems with relatively slow sampling rate.

The standard SMC, however, fails to address the practical

issue of the hard constraints often imposed on the system state

and/or input. Some past works [13–15] were conducted to in-

vestigate the constrained SMC for the single-input linear time

invariant system. Although these methods can deal with the state

constraint [13, 14] or the output constraint [15], they have not

considered the input constraint together with other constraints,

which can normally be dealt with by MPC.

Therefore, it is a natural step to investigate the possibility

of combining the two control techniques (i.e., MPC and SMC),

to take advantages of coping with system constraints of MPC

and robustness property of SMC. In [16,17], the first attempt has

been made to analyze the stability of such a closed-loop system.

The proposed methodology in these past works was inspiring but

inadequate. For example, the persistent feasibility condition was

not investigated. Also, the closed-loop stability was discussed

only with perfect model assumption. In this paper, we will fur-

ther generalize their work by studying the persistent feasibility,

computing the zero-th step feasible set, and proving the closed-



loop stability for both a perfect nominal model and an uncertain

model.

This paper is organized as follows. Short reviews of the ba-

sic discrete-time SMC and MPC are first provided. The novel

model predictive sliding mode control is then proposed, along

with the sliding mode conditions for the persistent feasibility and

the closed-loop stability. For robust performance in the presence

of uncertainty, we then discuss a min-max formulation. Finally,

a simulation study is presented to demonstrate both the nominal

and the robust performance.

PRELIMINARIES

Discrete-Time Sliding Mode Control (DT-SMC)

Consider a discrete-time single-input linear time-invariant

(DT-SI-LTI) system in the normal form with no parametric un-

certainty, disturbance, state or input constraints, i.e.

x(t + 1) = Ax(t)+Bu(t) (1)

where x ∈ R
n,u ∈ R, A ∈ R

n×n,B ∈ R
n. Sliding mode control

design consists of two steps: (1) design a stable sliding manifold

s(x) = cT x = 0 (with cT B 6= 0), so that x(t) approaches to the

origin when s = 0, and (2) design a reaching law and the corre-

sponding control input so that s(x) is attracted to 0.

For the design of the stable sliding manifold and the stability

analysis during the sliding mode, without loss of generality, we

assume that the original system is controllable, and we transform

it to the normal form, i.e.

A =

[
A11 A12

A21 A22

]

, B =
[
0, . . . ,1

]T

x =
[
x1, x2

]T
, c =

[
c1

1

] (2)

where A22 and x2 are scalars. During the sliding mode s(x) =
cT

1 x1 + x2 = 0, we can express the dynamics of x1 as

x1(t + 1) = (A11 −A12cT
1 )x1(t) (3)

Controllability of the original system implies that {A11,A12} pair

is also controllable [18]. Hence the eigenvalues of A11 −A12cT
1

can be arbitrarily assigned by the choice of c1. For stability, they

must be inside the unit circle. In order to enforce the state to

remain on the sliding manifold (i.e., s(t + 1) = s(t) = 0), the

equivalent control is given by

ueq(x(t)) =−(cT B)−1cT Ax(t) (4)

The dynamics corresponding to this ideal sliding mode becomes

x(t + 1) = [In×n −B(cT B)−1cT ]Ax(t) (5)

where In×n is the identity matrix in R
n×n. Through simple al-

gebraic manipulations, one can show that [In×n −B(cT B)−1cT ]A
in Eqn. (5) always has an eigenvalue at the origin plus the same

eigenvalues of A11 −A12cT
1 in Eqn. (3), if the system is in the

normal form.

When the sliding mode controller is designed in discrete-

time, or the continuous-time design is implemented digitally, or

the discrete-time model (1) is a sampled model representation

of an actual continuous-time plant, the state variable may not be

exactly on the sliding manifold, instead it zigzags along s = 0

within a sliding mode band |s| ≤ ε [11]. x1(t) has an additional

forced response term. The stability may be inferred from

x1(t + 1) = (A11 −A12cT
1 )x1(t)+A12s(t), ∀|s(t)| ≤ ε

x2(t) = s(t)− cT
1 x1(t)

(6)

which may not cause problem since both the eigenvalues and the

sliding mode band width can be designed to be small.

Gao et. al. proposed the following quasi-sliding mode

reaching law [11]

s(t + 1)− s(t) =−σTs(t)− µTsgn(s(t))

σ > 0, µ > 0, 1−σT > 0
(7)

where T > 0 is the sampling period, µ and σ are the design pa-

rameters, which guarantee the following desired attributes: (1)

starting from any initial state, the state trajectory monotonically

move toward the sliding manifold; (2) once the trajectory has

crossed the manifold the first time, it zigzags along and crosses

the manifold in every successive step; (3) the trajectory is con-

fined in the sliding mode band (SMB) stated as

SMB = {x ∈ R
n
∣
∣ |s(x)|<

µT

1−σT
} (8)

The control that enforces the reaching law is given by

u(t)=−(cT B)−1
[
cT Ax(t)−cT x(t)+σTcT x(t)+µT sgn(cT x(t))

]

(9)

Therefore the stability of the closed-loop system can be achieved

by choosing c1 to place the eigenvalues in Eqn. (6) inside the

unit circle and choosing µ ,σ to make the forced response term

negligible.

Discrete-Time Model Predictive Control (DT-MPC)

Consider the same DT-SI-LTI system with state and input

constraints as

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0 (10)



Assume the constraints are in the form of convex polyhedra.

Namely, X = {x ∈ R
n
∣
∣ Axx ≤ bx}, where Axx ≤ bx is the usual

notation for the intersection of mx closed halfspaces, each repre-

sented by axix≤ bxi, i = 1, . . . ,mx. Similarly, U = {u∈R
∣
∣ Auu≤

bu}. We assume that X ,U contain the origin in their interior

and are closed.

The model predictive control provides an approximation of

an infinite-horizon optimal control by using the receding hori-

zon technique. Suppose at time step t, the state variable x(t) is

measured, the following constrained finite time optimal control

(CFTOC) problem is solved

J∗0 (x(t)) = min
U0→N−1

J0(x(t),U0→N−1)

, min
U0→N−1

p(xN)+
N−1

∑
k=0

q(xk,uk)

subj. to xk+1 = Axk +Buk, k = 0, . . . ,N − 1

xk ∈ X , uk ∈ U , k = 0, . . . ,N − 1

xN ∈ X f , x0 = x(t)

(11)

where the terminal constraint X f is also a convex polyhedron,

p(xN) and q(xk,uk) are the terminal cost and the stage cost re-

spectively, N is the prediction horizon, (•)k represents the pre-

dicted state or input at time t + k based on the knowledge of the

state at time t, U0→N−1 = [uT
0 , . . . ,u

T
N−1]

T contains the decision

variables, that is, the N control inputs from time t to t +N − 1.

After solving the above optimization problem, we apply only

the first optimal control u(t) = u∗0(x(t)) to the real system. We

solve the CFTOC problem again at the next time instance with

x0 = x(t + 1). The closed-loop system can be expressed as

x(t + 1) = Ax(t)+Bu∗0(x(t)) = fcl(x(t)), t ≥ 0 (12)

Two desired properties associated with MPC are of great interest,

which are the persistent feasibility and the closed-loop stability.

Without them, MPC may lead us into a situation where the afore-

mentioned CFTOC problem becomes infeasible after a few steps

of the system evolution, or the generated control inputs may not

lead to an asymptotically converging closed-loop state trajectory.

Lemma 1. Persistent feasibility [1]: Consider the model pre-

dictive control law described by Eqns.(11)-(12) with the predic-

tion horizon N ≥ 1, if X f is a control invariant set for the system

(Eqns.(1) and (10)), then the MPC is persistently feasible.

Control invariance means that once the system state enters

the set, there exists a control input that can confine the state in

this set hereafter. The proof of the lemma is given in [1].

NOMINAL MODEL PREDICTIVE SLIDING MODE CON-

TROL (MP-SMC)
Sliding mode control inspires us that, instead of directly sta-

bilize the original n-th order system, it is much easier to design

a controller that can stabilize the transformed first-order system,

namely the dynamics of the switching function s = cT x. The

complexity of the design is significantly reduced especially when

there are uncertainties, i.e., parametric variations and unexpected

disturbances, present in the system.

Model predictive control is a control methodology that can

explicitly deal with constraints. It is naturally motivated to in-

vestigate whether we can particularly design a CFTOC problem

so that the designed stable switching function s = cT x converges

to 0 after we keep applying the first optimal control from the

CFTOC optimization with receding horizon to the system. Peda-

gogically, it is easier to first discuss the persistent feasibility and

the closed-loop stability in the absence of uncertainties.

In light of the persistent feasibility lemma, a control invari-

ant terminal set must be designed. The following condition re-

lates the input power with the terminal constraint design.

Control Invariance Condition

For ε > 0 such that the system represented by Eqn. (6) is

stable, we design the terminal constraint X f ⊆X such that ∀x ∈
X f ⊆ {x ∈ X

∣
∣ |s(x)| ≤ ε},

usm(x) =−(cT B)−1cT Ax ∈ U = {u ∈R
∣
∣ Auu ≤ bu} (13)

where the sliding mode control law comes from Eqn. (4). The

design of X f can be easily done by first assuming the system is

in the normal form. It can be readily seen that

usm(x) = [F1 F2]

[
x1

s

]

F1 =−(cT B)−1[cT
1 (A11 −A12cT

1 )+A21−A22cT
1 ]

F2 =−(cT B)−1[cT
1 A12 +A22]

(14)

It is desired to have the following inequalities

AuF1x1 ≤ bu −AuF2s, ∀|s| ≤ ε

⇒ AuF1x1 ≤ min
|s|≤ε

{bu −AuF2s} (15)

where we use the shorthand notation mins[a] = [. . . ,mins ai, . . . ]
T

for vectors. Writing the above inequality in x1 as Arx1 ≤ br, we

can obtain X f = {x ∈ X | A f x ≤ b f } as

A f =







cT
1 1

−cT
1 −1

Ar 0

Ax






, b f =







ε
ε
br

bx







(16)

The assumption that X contains the origin and is closed implies

that X f has the same properties.



Although, with X f designed above, the control is guaran-

teed to have the power to steer the state to be exactly on the

sliding manifold at the next time step, i.e. cT (x(t + 1)) = 0 if

x(t) ∈X f . It is, however, not necessarily the case that x(t +1) ∈
X f . This might be counterintuitive since in a stable sliding mode

band the state tends to move toward the origin, instead of moving

away from it. In order to achieve the control invariance property

of X f , the following geometric condition must also be satisfied

X f ⊆ X̃ f (17)

where

X̃ f , {x ∈ X
∣
∣ A f (In×n −B(cT B)−1cT )Ax ≤ b f } (18)

MP-SMC Formulation

The proposed MP-SMC solves the following CFTOC prob-

lem with receding horizon

J∗0 (x(t)) = min
U0→N−1

J0(x(t),U0→N−1)

, min
U0→N−1

N

∑
k=0

|cT xk|

subj. to xk+1 = Axk +Buk, k = 0, . . . ,N − 1

xk ∈ X , uk ∈ U , k = 0, . . . ,N − 1

x0 = x(t), xN ∈ X f

(19)

where s(t) = cT x(t) is the designed stable switching function

with sliding mode band width ε > 0. X f is obtained following

the design procedure discussed in the control invariance condi-

tion. Since it is desirable to make the state converge to the sliding

manifold s = 0, we penalize the deviation of the switching func-

tion from 0 for the entire prediction horizon.

Remark 1. The CFTOC problem Eqn. (19) can be written in

the form of multi-parametric linear programming. The feasible

set (the zero-th step feasible set), denoted as X0, is a polyhe-

dron. The optimal objective function J∗0(x) : X0 → R is continu-

ous, convex and piecewise affine over X0. The optimal solution

U∗
0→N−1 is continuous piecewise affine over X0 [1].

For the persistent feasibility and the closed-loop stability, we

have the following theorem:

Theorem 1. Closed-loop stability: For the CFTOC problem

in Eqn. (19) with the assumptions (16)-(17) described above, X f

is control invariant. The problem is persistently feasible for any

state in X0. The switching function s(t) of the closed-loop system

converges to 0 as t → ∞. The stability of the manifold guarantees

that the closed-loop system state asymptotically converges to the

origin, i.e. limt→∞ x(t) = 000. The domain of attraction is X0.

Proof. The persistent feasibility can be concluded directly from

the control invariance condition and the persistent feasibility

lemma. The closed-loop stability is proved by establishing that

J∗0 (•) in Eqn. (19) is a Lyapunov function for the closed-loop

system. We first note that J∗0 : Rn → R is ”boat-shaped”, i.e.

• J∗0 (x)≥ 0, ∀x ∈ X0

• J∗0 (x) = 0, only when cT x = 0

• J∗0 (x) is a convex function of x, ∀x ∈ X0

(20)

The change of J∗0 (x(t)) along the state trajectory is then investi-

gated. Consider x(t) ∈ X0, suppose Eqn. (19) has the minimizer

U∗
0 = {u∗0, . . . ,u

∗
N−1} and the corresponding optimal state trajec-

tory xxx0 = {x0, . . . ,xN}. We apply u∗0 to the system and obtain

x(t + 1) = Ax(t)+Bu∗0 = x1 since perfect model is assumed. At

time t + 1, Eqn. (19) is solved again for x0 = x(t + 1). An upper

bound of J∗0 (x(t + 1)) can be constructed by finding a feasible

control sequence, Ũ0 = {u∗1, . . . ,u
∗
N−1,usm(xN)}. Since xN ∈ X f ,

by the control invariance condition, usm(xN) ∈ U , xN+1 ∈ X f ,

and cT xN+1 = 0, i.e., the input constraint and the terminal set

constraint are satisfied by the proposed control sequence. The

objective function corresponding to Ũ0 is J0(x(t +1),Ũ0), which

provides an upper bound for the optimal objective function value,

i.e.

J∗0(x(t + 1))≤ J0(x(t + 1),Ũ0) = J∗0(x(t))−|cT x(t)|+ |cT xN+1|

⇒ J∗0(x(t + 1))−J∗0(x(t))≤−|cT x(t)| (21)

Therefore, we can regard J∗0 (•) as a Lyapunov function of s(t).
Using Lyapunov direct theorem, s(t) of the closed-loop system

converges to 0 as t → ∞. Therefore, the closed-loop state x con-

verges to the origin along the designed stable sliding manifold.

ROBUST MODEL PREDICTIVE SLIDING MODE CON-

TROL
Uncertain Model

The MP-SMC designed in the previous section is based on

the nominal model without parametric uncertainty or external

disturbances. In practice, the nominal model is often subject to

these model uncertainties. We now consider an uncertain single

input LTI system model in the following form

x(t + 1) = (A+∆A)x(t)+Bu(t)+ f (t) (22)

where ∆A and f (t) have the compatible dimension. We assume

the matching conditions: ∆A = BĀ and f = B f̄ (Ā ∈ R
1×n, f̄ ∈

R). Denote the lumped uncertainty as d(t) = Āx(t)+ f̄ , and as-

sume it is known a-priori to be within some bound, i.e.

d ≤ (cT B)d(t)≤ d (23)



The following notation is introduced

dav =
d+ d

2
, δd =

d − d

2

D = [dav − δd,dav + δd]

(24)

Eqn. (22) can be rewritten as

x(t + 1) = Ax(t)+B(u(t)+ d(t)) (25)

Remark 2. Note that we are only studying the case where

the model uncertainty is matched into the input channel and

bounded. If the matching conditions and uncertainty bound con-

dition are not valid, another analysis and design will need to be

resorted to for the mismatched uncertainty.

Similar to the sliding mode control, our proposed algorithm

regulates the switching function s(x) near 0, instead of regulating

the state variable x directly.

Lemma 2. Robust sliding mode condition: It is first noted

that the robust sliding mode band RSMB= {x∈R
n
∣
∣ |s(x)| ≤ δd}

is robust control invariant to the following control

ursm(x) =−(cT B)−1(cT Ax(t)+ dav) (26)

With this control and regardless of the actual disturbance, the

state at the next time step is guaranteed to stay in RSMB, i.e.

s(t + 1) =−dav +(cT B)d(t) ∈ [−δd,δd], ∀cT Bd(t) ∈ D (27)

The procedure is similar to the nominal case to design a

polytope X f ,robust ⊆ X such that ursm(x) ∈U , ∀x ∈X f ,robust ⊆
{x ∈ X

∣
∣ |s(x)|< δd}.

To achieve the robust control invariance property of

X f ,robust , a more restricted condition involving the system un-

certainty is derived as follows

A f (In×n −B(cT B)−1cT )Ax+A f B(cT B)−1d′ ≤ b f ,

∀x ∈ X f ,∀d′ ∈ [−δd,δd]
(28)

Geometrically, if we denote Eqn. (28) as the polytope X̃ f ,robust

in x, the following condition needs to be verified,

X f ,robust ⊆ X̃ f ,robust (29)

Combining these conditions, ∀x ∈ X f ,robust , there exists

ursm(x) = −(cT B)−1(cT Ax(t) + dav), which satisfies the input

constraint and can keep the state within X f ,robust . Essentially,

this condition drives the state to move toward the origin when it

slides in the robust sliding mode band.

Min-Max CFTOC with Closed-Loop Prediction
For robust performance in the presence of uncertainty, we

want to optimize the controller performance for the worst case,

i.e., to minimize the objective function subject to the worst pos-

sible uncertainty. Therefore we pose the CFTOC as the follow-

ing min-max optimization problem which needs to be solved re-

cursively backwards from the terminal step (referred to as the

closed-loop prediction).

J∗j (x j) = min
u j

J j(x j,u j)

subj. to

{

x j ∈ X , u j ∈ U

Ax j +B(u j + d j) ∈ X j+1, ∀cT Bd j ∈ D

(30)

where

J j(x j,u j), max
d j

|cT x j|+ J∗j+1(x j,u j,d j) (31)

The j-th step feasible set is also computed recursively,

X j = {x ∈ X | ∃u ∈ U such that

Ax j +B(u j + d j) ∈ X j+1, ∀cT Bd j ∈ D}
(32)

for j = 0, . . . ,N − 1 and with boundary conditions

J∗N(xN) = |cT xN |

XN = X f ,robust

(33)

where X f ,robust satisfies the robust sliding mode condition. With

the help from the one-dimensional switching function s(x), it is

not hard to quantify the “worst case” disturbance, which is the

one pushing s away from 0. The above min-max formulation

is also a multi-parametric linear programming. The properties

discussed in Remark 1 hold.

Theorem 2. Robust closed-loop stability: For the min-max

formulation described in Eqns. (30)-(33), the problem is per-

sistently feasible for any state in X0. The switching function

s(t) = cT x(t) of the closed-loop system converges to {s
∣
∣|s| ≤ δd}

as t → ∞. Furthermore, x stays close to the origin since the slid-

ing manifold is designed stable.

Proof. The persistent feasibility can be concluded from the ro-

bust control invariance of the terminal set constraint. Consid-

ering x(t) ∈ X0, the proposed CFTOC problem described in

Eqns. (30)-(33) is solved recursively to provide the optimal

control sequence U∗
0 = {u∗0, . . . ,u

∗
N−1}. xN|t , which denotes the

N-th step forward predicted state based on the knowledge at

time t, is in X f ,robust regardless of the predicted disturbances.

Let d•|t = {d0,d1, . . . ,dN−1} denote the worst-case disturbances.



Consider the objective function value J′0(x(t)) corresponding the

optimal control U∗
0 and a slightly modified disturbance sequence

{d(t),d1, . . . ,dN−1}, where d(t) is the actual disturbance act-

ing to the plant at time t. By the min-max nature, we have

J′0(x(t))≤ J∗0(x(t)). It certainly follows that

J′0(x(t))+ δd ≤ J∗0(x(t))+ δd (34)

We apply the first optimal control u∗0 to the plant and the plant

is also subject to the disturbance d(t). The state at the next time

is x(t + 1) = Ax(t)+B(u∗0 + d(t)). The following non-optimal

control Ũ∗
0 = {u∗1, . . . ,u

∗
N−1,ursm(xN|t+1)} must be feasible since

xN−1|t+1 ∈ X f ,robust

ursm(xN−1|t+1) ∈ U

xN|t+1 = AxN−1|t+1 +Bursm(xN−1|t+1) ∈ X f ,robust

(35)

The corresponding objective function value Jo
0 (x(t + 1)) is

greater than the optimal value, i.e., J∗0 (x(t + 1)) ≤ Jo
0 (x(t + 1)).

It follows that

|cT x(t)|+ J∗0(x(t + 1))≤ |cT x(t)|+ Jo
0(x(t + 1)) (36)

Note that by construction, the left hand side of Eqn. (34) and the

right hand side of Eqn. (36) should have the same value because

(i) they have the same initial conditions x(t) and d(t)
(ii) u∗j’s are used for j = 0,1, . . . ,N − 1

(iii) maxdN−1|t+1
|cT xN|t+1|= δd since xN−1|t+1 ∈ X f ,robust

Therefore, from Eqns. (34) and (36), we have

J∗0 (x(t + 1))− J∗0(x(t)) ≤ δd −|cT x(t)| (37)

Note that, J∗0 : Rn → R is still ”boat-shaped” since

• J∗0 (x) achieves its minimum J∗ only when |cT x|= 0

• J∗0 (x)≥ J∗, ∀x ∈ X0

• J∗0 (x) is a convex function of x, ∀x ∈ X0

Furthermore, as seen from (37), J∗0 stops decreasing only when

x ∈ {x ∈ X
∣
∣|cT x(t)| ≤ δd}. Therefore, as t → ∞, the state is

attracted to the robust sliding mode band and stays near the origin

since the sliding manifold is stable.

SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-

posed model predictive sliding mode control using numerical

simulations.
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Figure 1. Nominal performance: the feasible sets

Nominal Performance

Consider a DT-SI-LTI system in the normal form. For nom-

inal performance validation, perfect model is assumed for sim-

ulation without model uncertainty. We use a second-order sys-

tem described below to demonstrate the performance in order to

clearly visualize the constraints and the optimal objective func-
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Figure 2. Nominal performance: ”boat-shaped” Lyapunov function of the

switching function. The color of each point on the upper figure corre-

sponds to the value of the same color on the lower figure.

tion values

x(t + 1) =

[
1 0.1

0.3 1

]

︸ ︷︷ ︸

A

x(t)+

[
0

1

]

︸︷︷︸

B

u(t) (38)

X :







1 0

−1 0

0 1

0 −1







︸ ︷︷ ︸

Ax

x(t)≤







3

3

3

3







︸︷︷︸

bx

, U :

[
1

−1

]

︸ ︷︷ ︸

Au

u(t)≤

[
1

1

]

︸︷︷︸

bu

It is easy to see that the system is controllable. Choose

c1 = 9 so that one closed-loop eigenvalue is placed at 0.1. For the

design of the MP-SMC, we set the prediction horizon N to 10,

and ε to 0.1. We follow the design procedure discussed in the

sliding mode condition to obtain the control invariant set X f as
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(a) The representative state trajectories.
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Figure 3. Nominal performance: the closed-loop responses. Solid lines

represent the closed-loop state trajectories using the proposed MP-SMC.

Dashed-dotted lines represent the trajectories using the quasi-SMC from

[11]. Various colors correspond to different initial conditions.

shown in Fig. 1(a). With the boundary condition XN = X f , the

j-th step feasible set is calculated backward for j = N −1, . . . ,0.

Fig. 1(b) shows that the j-th step feasible set keeps expand-

ing, as j decreases, until the maximal control invariant set is

reached. With the use of the multi-parametric programming tool-

box (MPT) [19], the critical regions (defined as partitions of X0

where the optimal feedback law is continuous and affine [1]) are

plotted in Fig. 1(c). The continuous convex polyhedral piecewise

affine (PPWA) minimized objective function value is obtained as

a function of the state x ∈ X0, which is shown in Fig. 2(a)-2(b).

Its shape justifies its use as a Lyapunov function for proving the

convergence of the switching function to 0.

The optimal control law is computed to be a piecewise affine

function of the state x ∈ X0. To solve the optimization problem

at each sampling step in real-time, we actually use the MPT Tool-

box to generate a look-up table for the feedback control law in

advance. Then we simulate the closed-loop system under the op-



timal control with several representative initial conditions. The

closed-loop state trajectories are plotted in Fig. 3(a), and the cor-

responding inputs are plotted in Fig. 3(b). We use various col-

ors to represent different initial conditions. The solid lines rep-

resent the proposed MP-SMC controller and the dashed-dotted

lines represent the quasi-sliding mode controller in [11]. We can

observe that the state and the input constraints are both satisfied

using the proposed MP-SMC but not the quasi-SMC. The color

of the state trajectory matches the color of the corresponding

optimal control input. Some colors are repeatedly used, which

could be easily distinguished and should not raise confusion.

For robust performance validation, we consider the same

system but with uncertainties, i.e.

x(t) = Ax(t)+B(u(t)+ d(t))

−0.35 ≤d(t)≤ 0.35
(39)

In simulation, the disturbance is uniformly distributed in that in-

terval. For the CFTOC problem design, a new terminal constraint

X f ,robust shown in Fig. 4(a) is designed to satisfy the robust

sliding condition. After that, Eqn. (29) needs to be verified.

Eqns. (30)-(33) are solved recursively using the MPT Toolbox.

The j-th step robust feasible set and the critical regions are plot-

ted in Fig. 4(b) and 4(c). The optimal objective function for

the worst case is plotted in Fig. 5(a) and 5(b) versus the state.

Its shape verifies that all feasible initial state is attracted to the

sliding mode band regardless of disturbances. Some representa-

tive close-loop state trajectories (of different colors) are shown in

Fig. 6(a). Similarly, solid lines represent the proposed MP-SMC

and dashed-dotted lines represent the quasi-SMC from [11]. The

corresponding robust MP-SMC inputs are in Fig. 6(b) while the

quasi-SMC inputs are in Fig. 6(c). It has been shown that the sys-

tem state is successfully regulated to the neighborhood of the ori-

gin in the presence of lumped model uncertainty and disturbance

without violating the state and input constraints by the proposed

MP-SMC but not the quasi-SMC.

CONCLUSION

An innovative model predictive sliding mode controller was

proposed in this paper. The capability of dealing with system

constraints and the robustness property has been inherited from

MPC and SMC respectively. A constrained finite time optimal

controller was designed to steer the state to the sliding manifold.

The persistent feasibility and the closed-loop stability have been

shown to be guaranteed if the (robust) control invariance con-

dition is satisfied. The nominal and robust performance of the

proposed controller was demonstrated by simulations.
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